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SOUND PR0PA0ATION IN RAREFIED OASES 

ABSTRACT 

A study of sound propagation in rarefied gases is described with 
particular emphasis on the propagation in the geometrical relaxa- 
tion regime where the sound carrying molecules do not suffer 
intermolecular collisions during the flight from the transmitter 
to the receiver.    The propagation is characterized by the atten- 
uation and the phase parameters.    The dependence of these 
dispersion parameters on the separation between the transducers« 
the velocity distribution of the molecules subsequent to their 
interaction with the transmitter surface and the boundary condi- 
tions describing molecular-surface interactions is ascertained in 
terms of a semi-phenomenological theory.    Experiments for measuring 
the dispersion parameters are described and the results are dis- 
cussed and compared with theory.    A theory and an experiment for 
determining surface accommodation coefficients using sound propa- 
gation in rarefied gas are outlined.    Finally a theoretical model 
is constructed that leads to a reasonable qualitative and quanti- 
tative description of sound propagation in rarefied gases. 
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I.  INTRODUCTION 

The propagation of sound In gases, especially in rarefied gases, 

offers a method for studying gas dynamics on a molecular basis. 

Prom the theoretical point of view this study is particularly 

attractive since the amplitudes which define the sound field are 

usually small compared with the amplitudes which define the basic 

motion of the molecules. Thus, one is able to linearize the kinetic 

equation of motion. Of particular importance is the linearization 

of the Boltzmann equation 

(ik*i* •£)*(**'*)-*-{**'*'*)} 

w(h(x - o-i'V}  • f1-1) 
I . is the source term arising from intermolecular Interactions, mm 
I is the source term arising from molecular-surface interaction, 

and i is the molecular velocity vector. The function h represents 

the perturbation tern in the distribution function which is caused 

by the superposition of the sound field. 

A considerable volume of literature^/ exists which deals with 

methods and techniques for obtaining solutions to the linearized 

Boltzmann equation. These analyses are confined chiefly to the 

far field where all memory of surface interaction has been de- 

stroyed by intermolecular encounters. One considers a source 

term in the Boltzmann equation, devoid of any molecular-surface 

interaction contribution (I  • 0). The results which are obtained 

Indicate that measurements of sound in the far field are sensitive 

to some of the properties of intemolecular collisions. 

-1- 
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The analysis of sound propagation sufficiently near a transmitter 

surface such that molecules which carry the sound frcm that sur- 

face arrive at the observztlon point without undergoing Inter- 

molecular collisions can also be performed.  In this analysis the 

Intermolecular encounters may be Ignored (I  - 0). Consequently 

one expects the solution to the equation of motion to be dominated 

by molecular-surface Interaction parameters. An experimental 

study of molecular-surface Interaction by acoustical means is thus 

suggested. 

In considering the kind of Information which one may reasonably 

expect to obtain from experiments, it Is convenient to consider 

the properties of sound propagation in three distinct regimes of 

pressure. These are depicted in Pig. 1 and are discussed briefly 

below. 

The first regime may be termed the Classical Regime. Here the 

emphasis Is on quantities which vary little over the mean free 

path or the mean time of intermolecular collisions. Moreover, 

molecular-surface effects are quite negligible even at short dis- 

tjmces away from the transmitter.  Indeed the theoretical expres- 

sions which adequately describe sound propagation in the classical 

regime do not contain detailed kinetic parameters.  Nevertheless, 

the use of the kinetic theory to derive the sound propagation in 

this regime serves as a limiting criterion for the validity of 

Eq. (l.l) and may also provide a more fundamental understanding 

of the nature of sound. 

There exists a range of parameters which we designate the Frequency 

Relaxation Regime. Here the frequency of intermolecular collisions, 

f , is comparable to or smaller than the frequency f of the sound 
c 
field (f > fc)# and the sound field is observed at large distances 

-2- 
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from the transmitter surface.    Then sufficient Intermolecular 
encounters have taken place in the space between the transmitter 
and the point of observation   t o  ensure that the observed molecules 
possess no recollection of surface-molecular interactions  so that 
details can be examined entirely on the basis of intermolecular 
collisions. 

In the Geometrical Relaxation Regime the molecules are assumed to 
traverse the path from the transmitter to the receiver control 
surface essentially without undergoing ary intermolecular collisions. 
In this case,  one sets the source term I  of Eq.   (1.1)  zero.    The 
solution of the Boltzmann eauation then depends primarily on the 
molecular-surface interaction.    Consequently,  an examination of 
sound propagation in the geometrical relaxation regime could lead 
to information regarding such Interactions. 

Our chief concern is with the third regime and the study of molecu- 
lar-surface interactions.    The research reported here is mainly 
exploratory in nature In both its experimental and theoretical 
aspects.    Nevertheless  some of the findings and results contribute 
in some measure to the understanding of the phenomenon of the 
propagation of collective ordered motion in a rarefied gas. 

-3- 
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II.  DESCRIPTION OP THE MODEL FOR DISPERSION STUDIES 

To avoid complications In the interpretations of both the experi- 

mental and the theoretical results, it is expedient to impose 

certain constraints on the experimental and theoretical models. 

1) The gas molecules only possess translational degrees 

of freedom and the gas is composed of a "single com- 

ponent ," 

2) The surfaces of the transmitter and a test surface 

where the observations of the sound field are carried 

out (e.g., hypothetical control surfaces or receivers) 

are plane and parallel to each other. 

3) The transmitter surface vibrates unifomly and without 

distortion. 

4) The transmitter is large enough that end effects are 

negligible. 

5) Vibration of a single frequency is superposed on the 

basic motion of the molecules. 

6) The amplitudes which define the sound field are small 

compared with the amplitudes which define the basic 

motion of the molecules. 

We shall first dwell on the theoretical aspect of the phenomenon. 
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III. DESCRIPTION OP DISPERSION BY THE ATTENUATION 

AND PHASE (a AND ß) 

Consideration of the model defined above permits one to assume a 

solution to the equation of motion of the form 

fl*A,t)  - P0m ♦ h(x,U) , (3.1) 
*0~ w» v^ 

where the function h is small in the mean (i.e. the ratio of a 

velocity moment in h to one in F0 is very much less than unity). 

In Eq. (3.1) 

x ■ position of a control surface measured in 
the direction normal to its plane, 

C a molecular velocity vector, 

t = time of observation at the control surface, 

F (4) = solution to the equation of motion in the 

absence of sound. 

The equation of motion is then the linearized Poltzmann equation 

which is stated formally in Eq. (l.l). 

The sound pressure at the control surface, p(x,t) is the normal 

flux of alternating momentum at the surface 

p(x,t) -mj' ctf htaMKM)2    , (3.2) 

^here 

m ■ the mass of each molecule, 

x = a unit vector in the x-direction( 
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The dispersive properties of the sound field can be defined by the 

attenuation per unit distance, a and the wave number ß, for waves 

at angular frequency a). That there can be a well defined frequency 

Is evident from the separability of Eq. (1.1); and such harmonic 

disturbances can be Induced by Imposing an oscillating boundary 

at the transmitter. The momentum flux (pressure) at any space 

point thus Is of the form p(x,t) - p(x) exp(-ia>t). However no 

assumption has been made that pennlts one to assume that p(x) Is 

a plane wave and therefore one must obtain the mathematical defini- 

tion of a and ß from an analysis of the measurement process for 

detemlnlng attenuation and phase. One measures the pressure at 

neighboring space points In the vicinity of x, obtains the difference 

and normalizes by the Interval between the points and the pressure 

Itself. Thus one obtains, for closely neighboring points separated 

by Ax, 

P(X>A)P(X)--(°-^-|#x • (3-3) 

Clearly a and ß ar**. In general, functions of x and  therefore 
the sound pressure partial wave of frequency to at the point x is 

to be expressed In terms of the sound pressure at x1 by the relation 

x 

p(x) - p(x') exp - /  ds[a(s) - lß(3)] . (3.4) 
x' 

This concept of a generalized attenuation and phase which are not 

only frequency but also space dependent Is fundamental to the subse- 

quent discussion. 

Since p(x,t) Is a moment over h(x,4,t) we must first derive an 

expression for h(x,^#t) In terns of the molecular surface interaction. 

-6- 
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IV.  DERIVATION OP A GENERAL SOLUTION 

A.  Formal Solution 

Instead of attempting a direct solution of Eq. (l.l) by assuming 

a suitable form for the source term, we set the source term zero 

and make that solution subject to the boundary conditions which 

the sojrce term repr< sents. 

V/e denote the distribution function of the molecules subsequent 

to their interaction with the vibrating transmitter surface by G_ 

and the normalized distribution function of the molecules subse- 

quent to their Interaction with the transmitter surface in the 

absence of vlbrational motion by £_. V/e assume that the incre- 

mental velocity, o, and density, P°TI, which is imposed on the 

molecules by the surface vibration are linearly superposed on 

the molecular motion In the absence of vibrations. The parameter 

p° is the density in the absence of vibratlonal motion. We denote 

the distribution function of the incremental velocities by q. G 

is a Joint distribution function in I' and o, and  can be written 

in product form because £' and a are independent. Thus, 

mG_(x = O,j,#0,f) « p°|l + Ti(f)jq(o)g_(^ - ö)U(^) .  (4.1) 

Hero 4' ■ molecular velocity vector. 

f 
J  do q(cO = 1, (4.2) 

I dig  (?) « 1, (4.3) 
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and 

0 Ci<o 

x     L 1 e^ > 0 

We assume that lal/c
m And T| are small compared with unity and ex- 

pand g^ In Taylor's series retaining only the first order terms in 

i 
,_({- . o) - g_(«') - • • ^ ».(«') . (*.5) 

Thus, to first order In the perturbation 

raO; - raj 0_do - p° «{gj^') + Ti(t')g-(^•) 

where 

? ■ / da oq(o) and T? - / do^ T) q(o) . 

We Introduce a spatial and temporal propagator T to describe the 
development In time of the distribution function CT as x goes 

from zero at the transmitter to Its value at the control surface. 
Pomally we denote this development by the equation 

-8- 
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p(x,j.,;) -/dt' JdV Q'Jx - 0, ^',0,  f) 

T(x - 0,1', t'|x^,t)    . (4.7) 

The determination of the functional form of T Is equivalent to 

solving the Boltzmann equation with corresponding constraints. 

This usually would present Just as many difficulties as the direct 

solution of Eq. (1.1). However, In the geometrical relaxation 

regime the propagator assumes the simple form 

T . ö(f - t +^-) B^' - t)    , (4.8) 
^x   ~ ~ 

where 5 Is Dlrac's delta function and 6 ■ ^ 6„ö». •^  x y z 

Prom Eqs. (4.6), (4.7) and (4.8) one obtains 

F- (P» jg.m + TKt -A g «) 
L      - 5x      '  " 

- ö(t. f.) • ^».(«)} mx) . 

h - (p>) {rig, - J • ^ f J V{ix)     . (4.9) 
and 

Note that h as given by Eq. (4.9) satisfies the Boltzmann equation 

with both I  and I  equal to zero [see Eq. (l.l)]. The function 

h satisfies the boundary conditions by virtue of Its derivation 

from Eq. (4.7). To proceed further one must examine these boundary 

conditions In some detail. 

-9- 
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B.  Boundary Conditions (Molecular^Surface Interaction 

at the Transmitter) 

Assume that the distribution function of the Incident molecules 

on the surface of the transmitter Is (p?/m)g (^)U(-£ ) [p° is 

Independent of time In absence of vlbratlonal motion]. Consider 

the transformation from coordinates fixed in space to coordinates 

fixed in the vibrating surface of the transmitter. In this co- 

ordinate system the distribution function for the incident and 

emerging molecules is given by (py/m)g+(^ + ^)U(-?X) and(p^/m) 

(1 + Tl)g "U - (a - M.) fU(0 respectively. The velocity \i  is the 
velocity of the surface of the transmitter (note that ^ « w), 

Now suppose that the surface does not constitute a source (or a 

sink) of molecules. One can then equate the incident and 

reflected fluxes and obtain, after some reduction, the conserva- 

tion equations 

r\  - aC^/c,,,) and p^ - p°c+, (^,10) 

where 

a - cm[(v/2c+) - (Y - l)/2cj , (4.11) 

5X - Yki , (4,13) 

vu -/ dfK(t,|t)n(t') , (4.14) 
.00 

K(t,|t) ■ the probability that a molecule that strikes 
the surface at time t' emerges at time t. 

-10- 



Report No. 116S Bolt Beranek and Newman Inc. 

Here use has been made of the requirement that g (£) —•• 0 

as |^| —• * and we have also made the reasonable assumption that 

v and y  are constants in time. Note that v and y  depend on the 

type of molecular-surface interaction. The parameter v Is re- 

lated primarily to the "sitting time" of the molecules on the 

surface of the transmitter. This surface relaxation time can 

be sensed by the sound field when the average sitting time is 

comparable to or longer than the period of the sound oscillation. 

The parameter y  is related primarily to the efficiency witn which 

the surface impresses its vibrational motion on to the molecules. 

The exchange of the normal component of momentum between molecules 

and surfaces is of great interest to aerodynamicists and may be 

stated in terms of the ratio, ßT, of reflected to incident normal 

momentum flux. In the absence of surface vibration this ratio is 

In terms of properties of the sound field the reflector ratio is 

ß* . (Y - 1) + (a^/2cmcj , (4.16) 

where 

c2 ♦ -/««ik'W • c-17) 

and a, c+ and y  are defined in Eqs. (4.11), (4.12) and (4.13) 

respectively. Equation (4.16) Is a statement that acoustical 

measurements could be used to ascertain reflective properties 

of molecular-surface systems. 

-11- 
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C,  Classification of Surface Interactiono 

We find It convenient to consider the molecular-surface Interaction 

In terms of three special processes by which the general case may 

be approximated. Such consideration serves to elucidate the physi- 

cal Interpretation of the quantities v and y.    These three Inter- 

action processes are outlined below: 

1. Specular Reflection 

Each molecule Is assumed to Interact with the surface Instantly 

and In such a way that uhe sign of Its compnaent of momentum In 

the x-dlrectlon Is reversed. This Interaction process conserves 

energy and momentum. It Is easy to show that In this case (viz. 

Eq, (^.1) et seq.) 

Y « 2 and v « 1 

2. Diffuse Elastic Reflection 

Each molecule is assumed to Interact instantly with the surface 

such that the Incident energy is conserved but not the momentum. 

It Is further assumed that the scattering obeys the cosine law 

of reflection. In this case one can show that 

Y • 4 and v ^ 1 

3. Diffuse Inelastic Reflection 

The molecules are considered adsorbed by the surface and to come 

to thermal equilibrium with it before boiling off in a random 

fashion. That is. It is assumed that neither the momentum nor 

the energy are conserved, and that the distribution of the 

-12- 
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molecules subsequent to the interaction is consistent with the 

assumption that the gas Is In thermal equilibrium with '^hc surface 

In this case there are two reßimes.  If the function Kft'lt) 

Is such that most of the contribution to the integral in 

Eq, (^.1^) comes from a region where t - t' < v/2^t  then 
v = 1; in the other extreme v = 0. For diffuse inelastic re- 

flection Y ■ 1. 

When more complicated molecular-surface interactions can be 

approximated by such elementary processes, the contribution 

from each basic process is computed separately and added to 

give the total effect. 

-13- 
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V.       DETERMINATION OF THE TRANSMISSION OP SOUND IN 

TOE GEOMETRICAL RELAXATION REGIME 

The equation of sound propagation In the geometrical relaxation 
regime can be determined using the seml-phenomenologlcal parameters 
Introduced In the previous section.    Substituting Eqs.   (4.9)  and 
(4.10)  In Eq.   (3.2) and making straightforward manipulations,  we 
obtain 

(5.1) 

where 

s - ^/cm    , (5.2) 

r - Vcm    • (5.3) 

Note that Eq. (5.1) Is dependent on the molecular-surface inter- 

actions in a complex way. There are cases, however, for which it 

is possible to assume the analytical form of g and g_; for such 

cases, v and y  could be examined by acoustical means. Conversely, 

If v and Y could be estimated by an independent method, the distri- 

bution function, g^, could be studied by acoustical means. 

Equation (5.1) la suggestive of the work of other Investigations. 

It differs from the equation derived by Meyer and Sessler^but 

for s » 1 and for a Maxwellian distribution It yields the same 

dispersion equations. Our results agree with an equation derived 

by Kahrv^ when the following restrictions are Imposed on Eq. (5.1); 

the distribution functions arc Maxwellian; v « 0 and 7 = 1 (i.e., 

diffuse inelastic reflection and t - t' of Eq. (4.14) Is, on the 

average, very much larger than ir/2u). 

-14- 



Report No. Il69 Bolt Beranek and Newman Inc. 

VI.  PHYSICAL INTERPRETATION OF SOUND DISPERSION 

IN THE OEOMETRICAL RELAXATION REGIME 

Prom Eq. (5.1) It Is evident that the expression for the sound 

pressure has the general form 

OB 

p(3) = N / dr A(r) exp (is/r) , (6.1) 
Jo 

In which N is independent of s. It Is through a careful analysis 

of the significance of the various contributions to the integral 

in this expression that we uncover the mechanism whereby the 

sound wave suffers dispersion in propagation. 

The Integral has an appearance very similar to the Fourier integral 

and as such can be thought of as being a superposition of weighted 

plane waves. A(r) would be the weighting function and the phase 

tem exp is/r a plane wave of wave number -; at dimensionless posi- 

tion s. The weighting function A(r) is the product of the molecular 

velocity distribution function and a factor which brings the terms 

N A(r) dr to the dimension of momentum flux, i.e., pressure. Thus 

the partial üound pressure (the sound pressure contribution from 

an infinitesimal velocity range) Is given by 

dp(s) « NA(r)exp(l3/r)dr . (6.2) 

From the above discussion and Eq. (6.2) one can conclude that 

were there but one velocity there would be no dispersion and 

the wave number would be inversely proportional to that one 

velocity. 

-15- 
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Extrapolation leads us to state that for a highly peaked flux 

distribution there would be little attenuation and dispersion. 

In nature, however, the fluid molecules have a rather broad 

velocity distribution. For equilibrium and near equilibrium 

the weighting function A(r) has the general fonn depicted In 

Pig. 2a. There is a maximum value of A when r Is of the order 

of unity. Consider now the Influence that such a broad weighting 

function has on a superposition of the partial waves of Eq. (6.2). 

In the superposition the partial waves cam Interfere destructively 

or constructively. The kind of interference contributed in the 

various ranges of the variable r in the integration can be dis- 

cussed by considering s/r in the ranges s/r > 1 and s/r < 1. 

The behavior of the phase term as a function of the variables r 

and s is depicted in Figs, 2b, c and d. For values of s/r large 

compared with unity the phase term is an oscillatory function of 

the variable r; the slower molecules (3 > r) arrive at the re- 

ceiver with widely varying phases.  The partial sound pressures 

associated with these molecules interfere with one another 

destructively (phase mixing). Thus the slower molecules do not 

contribute to the sound pressure. The faster molecules (s < r) 

arrive at the receiver with essentially the same phase.  This 

preservation of coherence by the faster molecules constitutes 

the sound field at the receiver. The inability of the slower 

molecules to transmit sound is directly responsible for the dis- 

persive properties of sound. Thus, what constitutes slow or fast 

molecules is detemined by whether the molecules possess velocity 

components, r smaller or greater than s, respectively. To account 

for the dispersive properties of sound in more detail it is there- 

fore convenient to consider the problem in three ranges of the 

parameter s. They are s « 1, s » 1 and s * 1 (see Pig. 2). 

-16- 



Report No. 1169 Bolt Beranek and Newman Inc. 

In order to introduce some quantitative data in the following 

discussion reference is made to the example of a Maxwellian 
distribution. That Is, we assume that both g and g_ are 
Maxwellian distributions. Then from the foregoing equations we 

obtain 

N = Po ^o V^' (6-3) 

A(r) = r2(a + 2yr)  exp (-r2) , (6.4) 

where 

M * no exp (-i^t), 

Po = P: - p.0 

and 
a = VT^V + 1 - y)  . 

A.  Dispersion in the Range s « 1; Figs. 2a and 2b 

In this range only the very slow molecules do not contribute 
to the sound transmission. Since their associated weighting 
functions are small they do not Impair greatly the total transfer 
of coherence from the transmitter to the receiver. Thus one would 
expect the attenuation parameter a to be small and to increase 
monotonically with increase in s. The phase parameter ß (wave 
number), which is inversely proportional to the speed of sound, 

is not greatly affected in this range by variation in s. As s 
increases a corresponding, but slight, decrease in ß is expected 
since it is left to the faster molecules to transmit the sound 
(coherence). 
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We cite the results which are computed by solving Eq. (3.^) using 

Eq. (6.1) and the Maxwellian quantities given In Eqs. (6.3) and 

(6.4) 

(a - iß)/ß0 - 
3a0[l + a13

2 + ...] 

- lb [1 + bjS^ + ...)  , (6.5) 

where 

ao « (^)
1/2[(*WTr + ItfHmfw  + 27) 

- 2(a ♦Vinr)2]/^»! + ky)2    , (6.6) 

10 ^ bo ' (ir)       (a +Vry)/(V7ra + 47)     . (6.7) 

ß ■ the phase parameter for an ideal gas under 
standard condition of temperature and pressure, 

a, ...b, ■ constants which depend on v and 7. 

Note that over reasonable .limits on v and 7 (0 < v < 1 and 

1 < 7 : 2] the value of bo is near unity. 

The quantitative result, Eq. (6.5)* bears out the qualitative 

discussion. 
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B. Dispersion In the Range 3 » 1; Figs. 2a and 2d 

In this range only the very fast molecules can participate In 

transmitting sound. Thus the phase parameter ß Is small compared 

with that in the range s « 1. However, its rate of decrease 

with increase in s is expected to be proportionately slow. The 

reason is that the weightinc function is a monotonically decreas- 

ing function of r; thus the molecules which are concentrated In 

the vicinity of r =" s are those which most influence the trans- 

mission. However, the cessation of the oscillation occupies a 

relatively wide range in the parameter s/r. Both these effects 

combine to resist large changes in ß as a function of s. The 

attenuation parameter a[N.B. a is a local attenuation variable, 

see Eq. (3.3)] follows similar changes with s as does the phase 

parameter, that is, its value decreases at a proportionate1^ slow 

rate with increase in s. 

Again we make use of the Maxwellian distribution to obtain 

quantitative results for this range. Making use of the method 
4/ of steepest descent—' one obtains 

(a - iß)/^ = (2|)1/2(|r1/3 {l - iV3; , (6.8) 

which is In agreement with the preceding qualitative discussion. 

The dispersion in this range is, to first order of approximation, 

devoid of molecular-surface interaction parameters. The results, 

Eq. (6.8), are given in graphical form in Pig. 3. 

C. Dispersion in the Range s - l; Figr. 2a and ?.c 

In the range r ^ 1 the weighting function is relatively large and it 
undergoes large variation as a function of r. Thus one v/ould 

expect large variation to occur in both the dispersion parameters. 

-19- 



Report No. 1169 Bolt Beranek and Newman Inc. 

The attenuation parameter Increases as s increases to unity. As s 

Is Increased further, the attenuation reaches a maximum  value and 
then decreases to an asymptote for s » 1. The phase parameter 

decreases significantly with Increase In s only when s becomes 

greater than unity. For only then Is the weighted mean velocity 

component of the faster molecules In the direction of propagation 

Increased. 

In this range we were not able to obtain analytical expressions 

for p(s) or Its derivative with respect to s, therefore, we per- 

formed numerical computations. The results a:*e plotted In Fig. 3. 

Observe that the dependence of the dispersion on the molecular- 

surface Interaction parameters Is present but not pronounced. 

TWa Is unfortunate} It Indicates that: considerable accuracy In 

the measurements of the dispersion of sound is required to obtain 

results that can distinguish between the various processes of 

surface-molecular Interactions. 
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VII.   EXPERIMENTAL WORKING RANGE 

In order to extend the  range of the work which has been previously 
conducted In this field,   *-**   ' as well as  to examine new applications 
where  sound propagation may be useful for studies of rarefied gas 
dynamics,  we chose to conduct our experiments at lower frequencies* 
(2 to  12 kc)  and at lower pressures* (as  low as  5 x lO"-5 ntn Hg). 
The  lower frequency range has  the advantage that sound measurements 
can be made In a truly rarefied gas over larger separations. 
Measurements over longer distances have the advantages that higher 
accuracies  can be achieved and that auxiliary equipment can be 
chosen without  the pains of miniaturization.    The challenge to 
this  approach is whether one can produce high enough signals  and 

sensitive enough receivers to achieve measurements with low sig- 
nal-to-nolse at  the lower pressures. 

c: / 
Greenspan^ conducted his measurements at 11 Mc and at relatively 
high pressures, higher than 1 mm Hg. Meyer and Secsler?/con- 
ducted their experiments at 100 and 200 kc and at pressures in 
excess of 2 x 10*3 mm Hg. 
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VIII. THE EXPERIMENTAL SYSTEM FOR STUDIES OP DISPERSION 

In this section, we describe briefly the experimental system 

which we used to stidy the dispersion of sound In rarefied air. 

The system Is designed to operate In pressure ranges where the 

mean free path of Intermolecular collisions Is longer than the 

spacing between the transmitter and receiver, 

A.  The Vacuum System 

For good accuracy and flexibility, it is desirable that the 

spacing between the transmitter and receiver be varied over 

several centimeters. Separations of the order of 1 cm or more 

require working pressures of the order of 10 ^ mm Hg or lower. 

(In air the mean free path at 10"^ mm Hg and 300° K is about 

5.5 cm.) Since mechanical pumps cannot achieve these low pres- 

sures. It is necessary to use a diffusion pump. 

The pumping system, which is of conventional design, is shown in 

Pig. 4, The limiting pressure obtained in the test section with 

this system was about 3 x 10"-3 mm Hg. 

The transmitter-receiver and the bell Jar-base plate systems are 

shown in Pig. 5. The sound source (transmitter) is mounted on 

a movable vacuum tight rod which can be actuated externally. 

With this arrangement, the distance between the source and receiv- 

ing microphone can be varied continuously over a 1 . .ge of 12 cm 

while maintaining a constant pressure in the test section. 

Two vacuum gauges are Incorporated in the system. A thermo- 

couple gauge Is used in the range from 10 mm Hg to 5 x 10 J mm 

Hg and an ionlzatlon gauge covers the range from j x 10 J mm Hg to 

10  mm Hg. We also had available an alphatron gauge with a range 
.-a 

from 10 mm Hg to 10 J mm Hg. 
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B.  The Electrical and Mechanical System 

The microphone Is of the electrostatic type (Bruel and KJaer 

Model 4132). A 1-lnch microphone is suspended vertically above 

the sound source in a fixed location. It is mounted in such a 

way that the electrical connections are through the top of the 

bell Jar. This arrangement is chosen in order to reduce the 

background signals due to electrical stray currents.  The polari- 

zation voltage of the microphone is set so that no discharge 

occurs between membrane and backing plate at the operating pres- 

sure. 

The sound source is an electrostatic transducer with solid 

dielectric. The vibrating diaphragm is light enough so that 

mechanical cross talk between it and the microphone is essentially 

eliminated. The vibrating surface extends to about a 5.0 inch 

diameter. The output of the sound source has a maximum of 130 dc 

at atmospheric pressure. 

TMC electric. ' diagram of the experimental apparatus is shown In 

Fig. 6. 

The separation between microphone and transmitter can be varied 

automatically, continuously and slowly over a range of about 12 cm. 

The initial separation may be set as small as 0.05 cm. The separa- 

tion x as a function of time is given by 

x = b + d[l - cos (t/r)] , (8.1) 

where b is the initial separation (which can be varied in- 
dependently),  d = 12.1 cm and T IS set at about 90 sec- 

onds (T may also be controlled independently).  This 

particular rate of change of stroke was decided upon because 

It is simple to Implement and also enables one to 
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I 
expand the Initial region (t « T) where the attenuation and phase 

parameters show definite deviation from the theory in which mul- 

tiple reflections are neglected. The disadvantage of this varia- 

tion Is that the records have to be converted to a linear scale. 

We have therefore installed mechanical and electrical linear 

scale converters which can be "switched in' when records over 

large separations are desired. With these converters operating, 

the abscissa of the graphic record is proportional to the distance 

travelled by the transmitter. With these devices, it is estimated 
■ 

chat the spacing can be read to better than 0.1 cm over the entire 

range of separation. 

The sound pressure level is recorded on a graphic level recorder 

and can be read to within 0.5 clb on a 50 db potentiometer. When 

a limited range of the sound pressure level is of Interest a 

1C db potentiometer is used and the accuracy thereby improved. 

Tfce results which are reported here were obtained with a 50 db 

potentiometer only. Typical records are reproduced in Fig. 7. 

The Identatlon in Plg„ 7a at about 1 cm is due to an approxi- 

mately 10 db change in gain which is sometimes necessary to keep 

the entire record on a 50 db potentiometer. 

The  phase is measured with a phasometer which indicates the phase 

difference between a direct signal from the driving oscillator 

and the signal received at the microphone.  The output of the 

phasometer is fed into the ordinate of a graphic recorder.  We 

estimate that in most cases the phase could be read to within 

10° over a phase change of 360°.  A typical record is shown in 

Pig. 8. The Jumps in the curves (at 2 cm and around 10 cm) 

occur when one full meter scale reading (360°) Is completed. 
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The useful frequency range of the present apparatus extends  fron 
5 kc  to about 12 kc.    The upper limit Is  set by the sensitivity of 

the microphone which drops off considerably beyond its resonance 
at  about 10 kc.     The lower llnilt is  set by the available  stroke 
of  12 cm.    Lower frequencies are useful for studies of multiple 
reflections only. 
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IX.  EXPERIMENTAL RESULTS 

All of the many records which were taken (e.g.. Pigs. 7, 8, and 9) 

show that there are two distinct regimes In the behavior of the 

amplitude and phase of the transmitted sound. There is the 

"Initial region (up to.approximately 1 cm) where the signal 

decreases very rapidly and the sign of the phase is opposite 

to that predicted by the theory. It Is only at a separation of 

more than 1 cm thft the attenuation and the phase of the signal 

follow, at least qualitatively, the theory outlined above. 

The region, where multiple reflections can be ruled out (x » 1 cm), 

we term the far field, "  The region between these two extremes 

we refer to as the intermediate region. '  Roughly, the initial 

region, the intermediate region and the far field correspond to 

regions which are defined by 3 « 1, s «- 1 and s » 1 respectively, 

where s is the normalizeJ separation. We shall now consider each 

region separately. 

A.  The Initial Region 

We found that the initial decay with increasing separation is 

Independent of the pressure down to 5 x 10  .mm Hz  for a given 

frequency, and up to a separation of about 1 cm.  A slight varia- 

tion of the initial decay with variation in frequency is observed. 

We conclude that for small separations (< 1 cm) and at a given 

frequency the decay witn distance is Independent of the pressure 

(this was observed over pressures ranging from 5 x 10' ' mm Hg to 

10 mm Hg) in the frequency range from 2 to 6 kc.  To establish 

that the initial decay is not a result of a possible variation in 

amplitude and phase over the surface of the transmitter, the 

phenomenon was examined at various sections of the transmitter. 

The results of these experiments show no variation in the detailed 

! 
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structure of the Initial decay curve.  Furthermore, we replaced 

the electrostatic transmitter by a 5-inch plane piston radiator 

(first resonance at about 15 kc) which was driven by an electro- 

mechanical shaker. We compared the initial decay curves obtained 

at various pressures and found them to be the same within the 

accuracy of the measurements. The piston radiator was only used 

in the lower frequency range (< 3 kc) due to Its poor efficiency 

at higher frequencies. 

Using our theory, we are able to partially account for the be- 

havior of the sound in this region. That the slope of the sound 

pressure level curve is independent of pressure at small separa- 

tions may be explained when one considers that for small separa- 

tions, the attenuation and phase in the geometrical relaxation 

regime resemble the corresponding parameters in the classical 

regime. This resemblance is not only qualitative but also 

quantitative (see Section VI). Since the attenuation and phase 

define the transmission of sound and since we see no reason why 

the presence of multiple reflections should alter this corres- 

pondence, no transition region is to be expected as one proceeds 

from the classical regime to the geometrical relaxation regime. 

B.  The Intermediate Region 

In this region, commencing first at higher frequencies (c.f. 

Fig» 9)» the multiple reflections fade and the response is pre- 

dominately the response of a single reflection at each surface. 

Figures 7 and 9 (which are representative figures) show that the 

attenuation is relatively small in this region. However, it 

increases somewhat with increasing separation. Comparison with 

Fig. 3 Indicates that this behavior is in agreement with theory. 

The phase also assumes a behavior which is more commensurate with 

the single reflection theory. 
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C.  The Far Field Region 

In this region, (x > 2 era) we can test the theory which we derived 

above. The experimental results are plotted In Figs. 10 and 11. 

As abscissa in these figures, we use the quantity R - (2/3ir)(f /f)^ 

It is related to the gas pressure p through f , the mean frequency 

of Intennolecular collisions. A corresponding parameter can be 

defined for the geometrical relaxation regime, R - 2/3* c
m/(x^) 

■ V(3s). Then c /x is the mean frequency of molecular-surface 

collisions. Note that in the geometrical relaxation regime the 

attenuation and phase are Independent of the collision frequency 

f and hence of the ambient pressure. 

Curves predicted by the classical Burnett theory and the values 

predicted by cur theory (in the geometrical relaxation regime) 

are also plotted. The computations are based on the diffuse 

elastic process of molecular-surface interaction.  There is an 

excellent agreement between theory and experiment in the geometri- 

cal relaxation regime. The experimental data which are analyzed 

for values of the dimenslonless separation parameter s « 5.22 and 

1 ■ 10.44 seem to favor the diffuse elastic process of molecular- 
surface interactions (see Fig. 3).  However, more refined experi- 

ments and analyses of the d£ta would be required before a definite 

conclusion on the type of surface interaction is Justified. 

The transition between the frequency relaxation regime and the 

geometrical relaxation regime is of special interest.  If one 

accepted the Burnett theory as fairly representative of the situa- 

tion in the classical, and in the frequency relaxation regime 

(even in the range of pressures where ^A < 2) then one might 

conclude (from Figs. 10 and 11) that the transition region from 

the frequency relaxation regime to the geometrical relaxation 

. 
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regime extends over a pressure range of about half a decade. This 

Is particularly evident in Fig. 10 where this transition region 

extends into the range of pressure for which the attenuation has 

its maximum value. The experimental data here have values which 

fall somewhere between the Burnett predictions and those from the 

theory which applies to the geometrical relaxation regime (c.f. 

Fig. 3). 

The predictions of the present theory are based on the assumption 

that the velocity distribution of the molecules subsequent to 

their interaction with the surface is Maxwellian. We have not 

ascertained the magnitude of the deviation from this distrj.bution 

that is required to significantly influence the results, however 

there is consistency between this assumption and the experimental 

data. 
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X.   SOUND PROPAGATION IN RAREFIED OASES — WAVE CONCEPT 

In this section a wave theory approach to the Interpretation of 

sound propagation In rarefied gas Is briefly expanded. The pur- 

pose of this analysis Is to construct an alternative analysis to 

the one of the particle concept that was given above. This Is 

brought out not only to reassess the results obtained by the 

particle concept but also In the hope that some aspects of the 

problem that cannot easily be Interpreted In terms of the one 

may be more readily Interpreted by the other. In particular, 

the phase reversal that occurs In the Initial region Is explained 

more readily by the wave concept. 

A.  The General Idea 

First consider only those molecules that have the same thermal 
2   2   2 \ 1/2 

speed c ■(£ + Cv + C_)   ♦ and assume specular reflection, x   y   z 
Then the speeds before and after Interaction with the vibrating 

surface are equal (except for the small ac component), and the 

molecules leaving a surface element are equally distributed over 

all angles. The molecules which emerge from a surface element 

have properties which are the same as that of a wave emanating 

from a surface element. They have a given speed of propagation 

and they are equally distributed over all angles. Therefore, 

the additional average momentum that Is given to the molecules 

by a vibrating surface element can be considered as a wave 

propagating out from this surface element.♦♦ Thus  by treating 

♦   We Impose an Isotropie velocity distribution. 
♦♦   This Is not the usual particle-wave analogy where the particle 

Itself Is represented by a wave whose wavelength Is given by 
the total momentum of the particle. In our case, only the 
additional momentum represents a wave. 
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the molecules carrying coherent momentum from the surface by the 

technique of wave propagation analysis one makes use of the 

elements of classical acoustics to interpret sound propagation in 

a rarefied atmosphere. There is also the convenience that the 

angular distribution is averaged out initially. 

F.  Radiation from a Moving Surface 

Still considering only molecules with the same thermal speed c 

take the velocity of the moving surface element dS to be u and 

define a wave number k = u)/c (u = angular frequency of the driver). 

The elemental sound nrejsure dn that is generated by the surface 

element dG at a distance h is then-^ 

,„ N exD( ikh) JO / -, ^ , \ dp = -ipu-J  ^ L  dS  . (10.1) 

(; = density of tne gas.) 

The result for the total vibrating surf tee S is obtained by 

integrating over d3. To obtain the actual sound pressure in a 

rarefied gas all values of c must be considered.  This is ac- 

comnlished by multinlying Eq. (lO.l) by the distribution function 

r'fc) for the thermal speed c md integrating over dc. Thus 

P - -^ Jo Js  'J 'X^h':h) ^0) dcda  • (10-2) 

For a ras at enuillbrlum 

F{c) m ±    °  expf-(c/cm)
2]  . (lOo) 

^ ^ c« m 
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I 
I 

Therefore 

P --T u/     Sj expf-(c/cm)2] 
vr     w o    c n 

• {Is -luf %tfli(h) "j ^   • (10.4) 

Thus for any configuration for which the radiation behavior (the 
integral over S) is known the propagation properties can be found 
by integrating over the speeds of propagation. This is especially 

useful if one wishes to calculate the sound propagation from a 
complicated transmitter system in a rarefied gas. To apply 
Eq. (10.4) one calculates the wave propagation from the geometry, 
multiplies it by the velocity distribution function and integrates 
over all possible values of c. 

C.  Radiation from an Infinite Disk 

For radiation from an infinite disk the integration over S is 
readily perfomed. The integral in the brackets yields the 
expected plane wave. One obtains 

-/     iay gJE lkh d3 " pc exp ikx " pc expfiuA/c)   (10.5) 

in which x denotes the normal distances from 
infinite disk to receiver. 
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By inserting Eq. (10.5) Into Eq. (10.4) one obtains for the pressure 

p - ~-upc / r3 exp[-r2 + l(s/r)] dr , (10.6) 

where 

r ■ c/c^ and s ■ Uä/C_ . 'in 'in 

This Is exactly Eq. (5.1) for specular reflection, (v - 1, Y - 2.) 

Since p and c are known, a measurement of u together with a known 

solution of the integral (i.e., for s > 3) provides a method of 

checking numerical constants in Eq. (10.6). Such a measurement, 

if its accuracy is better than 1 db, would indicate whether 

specular or diffuse reflection is dominant. 'Hiis accuracy could 

be attained only by refinement of the above experimental design. 

D.  Nonspecular Reflection from the Transmitter 

The above calculations included only the case of specular reflec- 

tion. Other reflection properties could also be considered by 

using the "wave concept." However, to do this one would have to 

know the radiation properties of materials with finite impedance 

(how much sound is radiated from a vibrating and absorbing sur- 

face?). Unfortunately, no complete solution of this problem is 

available. We assume that impedance of a moving disk alters 

mainly the amplitude of the radiated sound; other effects seem to 

be less important.  (This seems to hold for diffuse elastic and 

diffuse inelastic reflections.) Thus, we continue to confine the 

discussion to specular reflection only in using the wave concept. 
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E.  A Finite Microphone In Front of an Infinite Transmitter 

(Sound Waves under Standard Conditions) 

Consider the transmitter-microphone system depicted in Fig. 12. 

The classical sound 

can be expressed by 

The classical sound pressure pa as measured by the microphone 3 

p3 . upc c (1 * R) e*p Ita # (10#7) 

1 - R exp 2ikx 

(u ■ velocity of the transmitter, k = wave number, R ■ reflection 
coefficient.) 

Equation (10.7) is obtained by adding up all the reflected waves. 

Note that for R « 1, one obtains the usual plane wave solution. 
PIT 

R is a complicated function of x, d and X = -j— , the wave length. 

For the subsequent discussion we need only know its limiting 

behavior. For x « d, R * 1; and for x » d, R —• 0,  As 

x varies from x « d to x » d, one would expect a monotonic 

transition between these two limiting values of R. 

Consider the phase changes that occur when x is increased. For 

kx « 1 and R « 1 we have approximately 

Pg - upc0/-ikx  . 

Thus, the phase shift between u and p is ir/2.    For R "• 0 we havo 
9 

p = upc exp ikx s 

-34- 



Report No. 1169 Bolt Beranek and Newman Inc. 

The phase shift is kx. If the transition from R » 1 to R « 0 

occurs before kx ■ 7r/2, there must be a minimum In the phase 
shift as shown In Pig. 13. This phase transition Is Indeed 

observed (see Fig. 8). Note that the point where R fc 0 Is 

reached depends primarily on the microphone size. 

P.  A Finite Microphone in Pront of an Infinite Transmitter 

In a Rarefied Gas 

One obtains the sound propagation by multiplying Eq. (10.7) 

by F(c) and integrating over c. This gives 

p(s) » up — /  ^ exp[-(c/c )2] 

m 

. (1 * R) exp(laVc)  dc  i Uo#8) 

1 - R exp(21^K/c) 

Por R fe 1 and oac « c_ we can approximate this m 

1  r •   4 
p(s) = up -i. /    %  exp[-(c/c )2] dc , (10.9) 

m 

or 

2 ■3 upc   n upc 
v^'i   rr^-f r^ • (10.10) 

Equation (10.10) differs from the corresponding sound wave solu- 

tion only by a factor 9/5. 
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0.  An Attemr^ to Explain the Measured Results 

Calculated curves for limiting cases are presented in Pig. Ik, 
In order to normalize the data, the square of the sound pressure 

2 2 2 at each separation is divided by u p c . As before, s » cux/c . 

The decay from s ■ 1 to s - 8 is calculated from 

|p(8)|2 - !p(8 . 1)|2 exp {-2 g- ß0Ax| 

- |p(s - 1)|2 exp UoA>fS75  (s - 1)| (10.12) 

by using the value a/0o «0.2 (c.f. Pig. 3). The plot of the 

result of this calculation is labeled Eq. (10.12) in Fig. 14. 

Por the decay in the region s « 1 we take R • 1 and use 

Eq. (10.10). This calculation is represented by the portion 

of the curve labeled Eq. (10.10). Between the calculated curves 

Eq. (10.12) and Eq. (10.10) extrapolated transitions can be con- 

structed. The transition curves depend on the transition from 

R • 1 to R - 0. The two extreme cases of transition are depicted 

In Pig. Ik,   shat of a fast transition from R « 1 to R ■ 0 and 
that of slow transition between these limits. 

Figure 15 shows a comparison between the estimated and measured 

values.  The measured values were taken from Pig. 9. The results 

favor a fast transition from R ■ 1 at s « 1 to R « 0 for s > 1. 

Tne pressures at x « 0.05 cm are adjusted to be equal. Therefore, 

u/tu must be the same in both cases. This Implies that in the 10 kc 

case the amplitude of the transmitter is five times as high as 

that of the 2 kc case. Thus, one would expect the 10 kc curve to 
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be approximately Ik  db higher than tne 2  kc curve for s > 1, 

I.e., when the Initial decay region has been passed. The 

difference between the two curves at x » 3 cm is 10 db. We add 

to that 5 db. This represents the excess attenuation of the 10 kc 

wave over the 2 kc wave in reaching the point x » 3 (a ■ 5.1). 
Then the data agree. 
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XI.  REFLECTION OP SOUND PROM SOLID SURFACES 

The  results of experiments for both the amplitude and phase, 
expeclally at small separations, suggest the possibility of 

observing reflection of sound from solid surfaces at low pres- 

sures. Also recall that the experimental results favor the 

conclusion that Interaction of molecules with solid surfaces 

is predominantly diffuse elastic. This is in agreement with 

the finding of Stickney-»^ who used a molecular beam and a Rayleigh 

disc to measure the momentum transfer between a gas and  metallic 
surface. 

We set up an experiment to examine the reflection of sound di- 

rectly, as shown in schematic form in Pig. 16. With this arrange- 

ment there is no direct path between the transmitter and receiver. 

The sound reaches the microphone primarily by reflection from the 

test surface. The results obtained are snown in Fig. 17. The 

records illustrate clearly that reflection of sound can be measured 

in a rarefied gas. Moreover, the results in Fig. 17 show that 

standing wave patterns of a sort occur also at low pressures. 

The maxima and minima of the standing waves may bo used, as they 

are used at higher pressures, to determine reflection properties 

(e.g., relative accommodation coefficients) of surfaces at reduced 

pressures. 

If one assumes that the distance between two minima is directly 

proportional to c/a), c being the phase velocity of propagation, 

then the results in Fig. 17 imply that the phase velocity of 

sound increases with a decrease in pressure. This is in agree- 

ment with the phase variation with pressure reported in Figs. 10 

and 11. 
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More refined techniques would be required to make the measurements 

useful. However the results obtained thus far do give encourage- 

ment that such an approach may be successful. 
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XII. VARIATION OP SOUND PRESSURE LEVEL AS A FUNCTION OP PRESSURE 

The results obtained for the variation of sound pressure level 

as a function of separation (e.g., see Pig. 7) Indicate that the 

decay at small separation Is Independent of the pressure (in the 

range of multiple reflections). To examine this phenomenon In 

a more direct way, we measured the variation of the sound pres- 

sure level as a function of pressure at a frequency of 6 lec and 

a constant separation of 0.33 cm (s * 0.32). 

The  result of this experiment Is shown In Pig. 18. A curve based 

on a linear relationship Is also plotted. The range of pressure 

covered by this experiment extends from 6 mm Hg down to 1.4 x 10" 

mm Hg. The pressures were measured by an lonlzatlon gauge from 
-4 -^ 

1.4 x 10  mm Hg to about 5 x 10 J mm Hg and with an alphatron 

gauge In the range from 7 x 10"^ mm Hg to 6 mm Hg. Note that 

slight discrepancies between theory and experiment occur at the 

limit of the gauge range (for the lonlzatlon gauge the upper limit 

Is at 5 x 10'^ mm Hg) or where a switch of scale takes place (the 

alphatron scale has to be switched at Intervals of a factor of 

ten In pressure starting at 10  mm Hg). These are the positions 

where one may expect Inaccuracies In the gauges to be most pro- 
«2 

nounced. The break In the curve at about 10  mm Hg also shows 

that the calibration of the two gauges differs by a small amount. 

1Ti€ transition region from the classical to the geometrical 

relaxation regime occurs In the range of pressure of about 1.5 x 
.2 

10  an Hg. Since the curve does not exhibit a changing slope, 

our argument that no change would be expected In the range where 

s Is much smaller than unity Is substantiated. 
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XIII. EXPERIMENTS FOR THE  MEASUREMENT OP SURFACE 

ACCOMMODATION COEFFICIENTS 

A.   Outline of the Tht ory 

A configuration useful for the study of surface reflections is 

given in Pig. 19. S1 is the surface under study. S^ Is a con- 

trol surface used to define a source of coherent momentum fluctua- 

tions and S^ is a control surface used to define the coherent 

part of the distribution function of those molecules reflected 

from S,. 

As in the previous development, we ignore the source terms in 

Eq. (1.1) and subject the homogeneous equation to boundary con- 

ditions appropriate to the configuration under study. Then the 

relationship between the distribution function at phase point 

r*^*^ at time t to the distribution functions at the phase point -.n ^n        n 
r £ at t in a region having no collisions may be described by a 

^.ITL-JTI m 
propagator T (r£ t  Ir £t )  as in Eq.  (4.7).    n denotes the trans- 

mitting control surface and m the receiving control surface. However, 
when studying surface interactions,  one must give explicit consider?.- 
tion to the transformation caused by the surface itself.    By denoting 
the distribution function of those molecules striking surface S, by 
F «    and those leaving by P „  , one can indicate the surface trans- 

formation symbolically by 

P+S   " MS (P-S '    • (13tl) 

It is to the determination of M^    that we direct our efforts in 
51 

this section. 
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The control surface S« is essentially a source of  "test" molecules, 
i.e. molecules having a coherent momentum fluctuation characterized 
by the fluctuating velocity 0  ,    The control surface S0 Is estab- 
llshed to assess the distribution function and/or velocity moments 
of those molecules arriving from S,  which have retained this 
coherent momentum.    Thus it is necessary to express P <;  ,  the dls- 
tribution of molecules arriving at S^ in terms of P^    Jvia the 

propagators T and the surface transformation M«     .    This relation- 
al 

ship is expressed as follows: 

P-S3^'  13' i-   t3) -/•••/{dr}Tl^S1
T21P +S

2 

(rg, 52, 5, t2)  . (13.2) 

w represents the elemental variables of all Initial and inter- 
mediate phase points on the appropriate surfaces.    As in Eq.   (3.1) 
P „    can be separated into a dominant incoherent part P0 and a 

"S3 
coherent perturbation h.    Thus, 

P.S   " F-S    + h(fl3' i3' 5'  V    * (13,3) 

We first detennlne whether measurements of h or of moments over h 

can determine parameters which can be used to characoerize M, the 

surface interaction operator. 

It is convenient to express the operator M as a sum of three terms 

M - Ms + Mde + Mdl ' to-") 
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Each term is related to one of the three processes of surface 
Interaction as discussed in Section IV.C.    Expressing M In this 
manner amounts to the assumption that the  three processes, 
specular,  diffuse elastic,  and diffuse inelastic reflections, 
are linearly Independent.    Such an assumption may be valid pro- 
vided one seeks to describe only the gross properties of the 
molecular-surface interactions. M , M.    and M..   are the operators 
describing the processes of specular,  diffuse elastic and diffuse 
Inelastic interactions respectively. 

Equation   (13.^0  can be substituted in Eq.   (13.2)  to yield a 
decomposition of h, Eq.   (13.3)>  into three parts: 

h - h3 + hde + hdl    . (13.5) 

The receiver is in general a momentum sensitive device and is 

capable therefore only of measuring a linear combination of moments 

of the distribution function. The suitability of on  experiment to 

determine surface interaction parameters is dependent on the manner 

in which the properties of M« Influencr the velocity moments at 
bl 

So. The result is a function of op, and Ö  as evidenced by the 

expression Eq. (13.2). Consider as a representative moment, the 

momentum flux calculated from Eq. (13.5). Since each of the con- 

tributing components of h is a different function of angle, tne 

total momentum can be written 

ps3 ■ W'WV + "WWW  • (13-6) 

R and R, are the measures of the specular and diffuse elastic s     de 
reflection and are related to the momentum accommodation coefficient 

of the two processes, ß and ft. are in general complex functions 
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of the sizes of surfaces Sp and S,. The term  Involving the dif- 
fuse Inelastic reflection Is missing In Eq. (13.6) since this 
process destroys the coherent fluctuating momertum of the Imping- 
ing molecules. 

Equation (13.6) is of exceptional complexity. It is therefore 
necessary to introduce constraints related to specific experiments 
so designed that their interpretation can be related to a simpli- 
fied form of Eq. (13.6). Such simplification can be obtained if 
the surfaces Sp, S, and S- can be made small enough so that the 
path of propagation from S« to S^ can  be specified to a good 
approximation by Ö  and ö  only. A schematic representation of 
the experimental system is shown in Pig. 20a. For such a system, 
Eq. (13.6) can be approximated 

PS3 ' tV^W + "a.co,<ei3>l • to-7' 

Here ^8^021'ö13^ l3 a function 8uch that ** ls ©Qual to unit 
when d2i m &ii  and approaches zero rapidly as |Ö  - ^..J 
increases. An approximate expression for this function can be 
formally written 

^e21'ei3> 
«lne21 - ^3) 

^21 * el3 

2n 
(13.8) 

where n is a positive Integer, ög, and ö  In Eq. (13.8) are 
expressed in radians. In Eq. (13.7) we assume that diffraction 
effects from the edges of surface S, are negligible. 

• 
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By keeping both the distances and the source output constant, 
measurements of p«    as a function of the angle ö,^ should lead 
to determination of such ratios as 

PS3^13 " V Rs       co3(«12) 

from v/hlch the  ratio Rs/Rde can be ascertained.     If a baffled 
opening is used to replace the reflector surface,  an arrangement 
that is illustrated in Fig.  20b,   the measured sound pressure at 
Si is proportional to 

pS3(ei3 ' V ' R3 + Rde + Rdl - !    • (W-IO) 

When the source strength and distances involved are maintained 
equal in both experiments,  an additional ratio can be obtained, 
namely 

PS   (013 ^ ei2) 

PS  <ai3 • W12)    "    "de003^     • (13-U' 

Hence,  one should obtain the relative mangitudes of R ,  R.    and 
R...     The baffled hole experiment  can serve further as a check 
that diffraction effects are indeed negligible.     This is achieved 
by measuring p^  (J'^ / 9    ) and ensuring that p^  (Ö'     / di2)<< 

PS,^13 12;* 
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B,  Outline of the Experiment 

The schematic arrangement given In Fig. 20 shows the experimental 
setup! Sp represents a 1.23-Inch transmitter, S1   represents a 
1-lnch circular aluminum disk, S' represents a 1-lnch hole In the 
center of a 5-lnch aluminum baffle and S~ represents a 1-lnch 

microphone. The distances igi and ^13 are each 3-lnches. S^ Is 
attached to a 3-lnch long arm (^3) that can be actuated externally 
when the system Is In the bell jar. The arm can be actuated to 

move the microphone in a circular path In a plane containing the 
centers of Sg* S, (or S') and S^ (or S') with S, as the center 
point. The geometrical relationship between the various com- 
ponents are thus not fine enough to make Eqs. (13.7) and (13.10) 
applicable In an absolute sense, nevertheless we hoped that a 
rough approximation could be achieved« However, the signal-to- 
noise ratio was too low and no dependable result:» are reported. 

To Improve the signal-to-noise a more powerful transmitter was 
designed and constructed. With the more powerful transmitter, 
the signal-to-nolse ratio Is still too low. It appears that at 
least 10 to 20 db higher signals are required in order to obtain 
meaningful results. This Is not possible with our existing tools. 
We believe there is yet the possibility of carrying out such an 
experiment successfully. Two suggestions follow: 

1. Replace the source at S2 by a reasonably collimated and 
powerful molecular beam and place a transmitter at S,. 

Equation (13.6) should then be modified to accommodate 
the new arrangement. Such a modification can be derived 
using the methods of Section IV.B. 
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2. Replace the source at S2 by a colllmated and powerful 

molecular beam that Is chopped at a fixed frequency. 

By the time the fluctuating disturbance reaches the 

surface S„ the large amplitudes would have diminished 

sufficiently to be considered small and the molecules 

will have predominantly a fluctuating component of 

momentum at the frequency of the chopper. Both the 

collimatlon and the higher amplitudes that can be 

obtained at S, by this means should contribute more 

than 20 db to the signal to noise ratio making the 

experiment feasible. 
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XIV. A KINETIC THEORY MODEL OP SOUND PROPAGATION 

There Is a close quantitative correspondence between the results 

of Section VT which we obtained for the geometrical relaxation 

regime and those which are obtained in the classical and frequency 

relaxation regimes,-^ The point of departure Is that In the lat- 

ter regimes one must identify the variable s with the mean free 

path, s ■ (üh/c 9  whereas in the geometrical relaxation regime it 
is defined in tenns of the normal distance from the transmitter to 

the point of observation, Eq. (5.2), However, in both cases these 

lengths represent the free flight path between collisions. Since 

the dispersive properties of sound in the geometrical relaxation 

regime are related to the free flight path, we infer from this 

correspondence that dispersion in the other regimes can  be related 
to the free flight. We propose the following model. In the 

classical and frequency relaxation regimes a coherent ensemble 

of molecules travels an average distance of one mean free path 

without collision. In a collision process a new ensemble of 

molecules Is statistically established to which the coherence is 

communicated. This ensemble of molecules now becomes the carrier 

of this portion of the sound field. Between collisions, the 

motion is essentially in the geometrical relaxation regime and 

is subjected to the loss of coherence typical of that regime. 

In a subsequent collision process the residual coherence is once 

more established in an ensemble of molecules which has a basically 

similar molecular distribution to the preceding ensembles; and so 

on. Thus, with the proper interpretation as to what constitutes 

sound propagation in the classical and the frequency relaxation 

regimes, a simple model can be constructed to account for the 

dispersive properties of sound in these regimes. 
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A simple way of constructing the model Is to envision collision 

control surfaces as depicted in Pig. 21. We characterize the 

collision process and the subsequent emergence of a fluctuating 

component of velocity by a function of velocity 0(v ). At the 

zeroth control surface the fluctuating component in the density 

pertaining to those molecules that travel in the positive x- 

direction is given by 

i»o-/"*('xJ p(vx) dvx • f14-1) 

where I?(vx) is the distribution function of molecular velocities 
in the positive x-dlrection.    In travelling one mean free path 
from the zeroth to the first control surface,  the corresponding 
density fluctuation at the first control surface is given by 

P1 -/     0(vx) F(vx)exp(iAü)/vx) dvx    . (14.2) 

Proceeding in this manner, it can be readily shown that the den- 

sity fluctuation at the Nth surface is given by 

PN " po[pl/po]N ' f14-3' 

The fluctuating component in the distribution function leaving 

the Nth surface is given by 

hN " [pl/po]N 0(vx) p(vx)  • (14-4) 
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Denote the distance from the Initial control surface where the 
sound Is generated to a control surface where the sound Is 
finally measured by x. Then 

x - NA + ^x , (14.5) 

where Gx/A < 1. Since the sound measuring device Is a momentum 

flux (pressure) assessor, the relationship between the sound 
pressure at x - 0, p , and x ■ N + 6x, p(x). Is given by 

P(X) - PofPi/Pol" (f) / «(vx) v* P(vx) 'Po'v/o  —«'  X-'X' 

• expdOxw/v^) dvx . (W.e)   I 

If N Is large, Eq. (lk.6)  can be readily approximated by 

pW-PoIPi/Po]0^ • (1».T)   , 

Thus In the frequency relaxation regime the pressure and the 
density fluctuations obey essentially the same dispersive laws. 

This Is of course In sharp contrast to the geometrical relaxa- 
tion regime where the density fluctuations and the pressure 
fluctuations do not necessarily obey the same dispersive laws. 

If, In an experiment, the planes perpendicular to the direction 
of propagation where observations of the sound pressure are made 
are separated such that N21 Is large, 

N21 - ^ Ä Xl » 1    > ' (^.8) 
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where x. Is the location defining the first plane and x2 the 

second plane, then the attenuation and phase parameters are given 

by 

a - Iß - - J ^n(p1/p0) # (1^.9) 

Alternately If N21 < 1,  the attenuation and phase parameters 
are similar to those of the geometrical relaxation regime, namely. 

..« .. je o 
J     ^(vx)vxP(vx)exp(lAxü)/vx) dv3 

mf      *(vx)v^P(vx)exp(lAxü)/vx) dvx 
(14.10) 

where Ax « x2 - x, , Observe that the attenuation and phase 

parameters in Eq. (14.10) are independent of the ambient pres- 

sure. 

For the transition region from Npi » 1 to Ng, < 1 the disper- 

sion properties can be derived from Eq. (14.6); however, the 

expressions in this case are more complex. 

To calculate further one must explicitly know the function 

0(v ) . This function embodies the collision processes of 

molecular-molecular interactions. In Section VI we showed that 

the dispersive properties are not very sensitive to the details 

of the dependence of the interactions on the velocity v , and 

consequently one would expect Eq. (14.9) to yield results that 

are not very sensitive to the explicit dependence of 0(v ) on 

V This proves to be true. For any finite polynomial function 
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0(v )# Eq. (14.9) yields attenuation and phase parameters that 
show similar behavior to that of the corresponding geometrical 
relaxation parameters depicted in Fig. 3»  with A in place of x. 
The experimental results support this conclusion, as is apparent 

from the data of Figs. 3,  10 and 11. 

Although there are theories which lead to dispersion laws for 
nomal gases and plasmas, it remains a point of continued dis- 

cussion to obtain a physical description of the dispersive 
properties uncovered by these formal theories. The procedure 
that we have suggested above has the advantage that the physical 
Interpretation Is present in the model. We emphasize the essential 

distinction between a model of this type which Is motivated by its 
physical content and other models that have been used in this type 
of problem which are motivated more by their solvability. The 
conceptual basis is simply that the dispersive properties of 
sound In gases is directly determined from an assessment of the 
average amount of "free flight" that the molecules experience. 

" 

: 
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FIG.5    SKETCH   OF   THE   TRANSMITTER-MICROPHONE 
SYSTEM 
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: FIG. 13 PHASE AS A FUNCTION OF 
SEPARATION x 
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FIG.19 REFLECTION OF SOUND. S? A TRANSMITTER 
SURFACE, Sl A REFLECTING SURFACE AND 
S3   A   RECEIVER   SURFACE 
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FIG. 20      SCHEMATIC   REPRESENTATION   OF   AN 
APPARATUS   FOR   STUDIES   OF   MOLECULAR- 
SURFACE   INTERACTIONS 
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FIG.21     PROPOSED   MODEL   FOR   KINETIC 
THEORY   OF    SOUND   PROPAGATION 
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